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I. INTRODUCTION 

A. Purpose of Research 

High efficiency amorphous solar cells are a valuable technology 

researched world wide. Cell efficiency has been reported as high as twelve 

and thirteen percent initially, then stabilizing at about nine percent over 

extended exposure to sunlight. 1 If the efficiency can be raised to a stable fifteen 

percent, the low cost of these cells will allow them to compete with fossil fuels in 

the consumer energy market. Large scale production of hydrogenated 

amorphous silicon modules has already been reported. Much of the current 

research is directed toward improving the efficiency and stability. The work 

presented here introduces a new method for guiding the design of high 

efficiency hydrogenated amorphous solar cells, and may be used in conjunction 

with new fabrication methods that produce material with greater stability. 

B. Background on Computer Modeling 

The most important parameter in determining cell efficiency in 

hydrogenated amorphous silicon (a-Si:H) alloy p-i-n solar cells is the electric 

field profile, which is highly non-uniform. The value of the field at each point 

determines how far the photogenerated carriers can travel before recombining, 

and is determined by the trapped charge density. The method for accurately 

predicting the charge density and field profile is outlined in Chapters 2 and 3, 

and requires a numerical solution to Poisson's equation. 

Initial studies on a-Si:H p-i-n devices estimated the electric field by 

various methods. Dalal and Alvarez used a uniform field approximation for the 
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i-layer electric field by dividing the sum of the applied and diffusion voltages by 

the thickness of the i-layer.2 This approximation, also used later by Crandall, is 

easy to use since computer models are not required, but can lead to large 

errors in some cases.3 For example, if the i-layer has a high charge density due 

to exposure to sunlight, the electric field may drop to zero for much of the region, 

causing a large reduction in collection efficiency. 

An improved method was proposed recently by Dalal et aI., which 

estimates the electric field by solving Poisson's equation for a charge density 

that changes exponentially with distance into the i-layer.4 This method does 

produce more accurate estimates for the electric field profile, but the actual 

charge density does not follow a simple exponential distribution since the 

density of states changes exponentially with energy in the middle of the band 

gap. This method is easy to use, since no numerical integrations are required, 

but since the electric field profile is very important in determining the efficiency, 

more accurate models are better suited for the design process. 

To solve the electric field profile for an energy dependent density of 

states, Hack and Shur built a successful computer model in 1984.5 Their model 

also included the effects of non-uniform doping profiles and non-uniform optical 

excitation. After finding a complete self-consistent solution to the transport 

equations for the entire p-i-n structure using numerical methods, they could 

accurately predict the short circuit current, open circuit voltage, and fill factor for 

a constant band gap material. Their model also includes the p-i and i-n 

boundary conditions, the effects of various recombination mechanisms, and the 

effects of the presence of charge carriers on the electric field profile. These 

parameters are not well known in graded band gap material, though, so this 
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model is used primarily for characterizing constant band gap solar cells. 

The goal of this report is to accurately reproduce the electric field profile 

for an energy-dependent density of states, then to use this profile to predict the 

collection efficiency by solving a field-dependent diffusion equation for many 

different device structures including graded band gap devices. This method 

reduces the number of parameters affecting cell efficiency so that the effects of 

various new structures and conditions can be studied. Neglecting the boundary 

conditions results in somewhat lower values for the electric field near the 

interfaces, but this will have only a minor effect on the efficiency since the field is 

normally sufficiently high to collect all of the charge carriers in this region. In 

chapter 4, a comparison of the electric fields produced by the method described 

in Chapter 3 and by Hack and Shur's model shows that the fields are sufficiently 

close, and the resulting quantum efficiency curves will be reasonably accurate. 

This is also verified by reproducing the results of experimental reports on the 

efficiency of various device structures. 

It should be noted that the fields of Hack and Shur are held nearly 

constant at the p-i and i-n interfaces for increasing bias voltage due to the 

boundary conditions and are lowered in the middle of the region by the 

presence of charge carriers. The simplified model presented here does not 

consider these conditions, but still produces similar electric field profiles. The 

advantage of using a simplified model to find the electric field is that now the 

effects of various changes such as band gap profile and defect density can be 

easily studied. 

Once the model is shown to reproduce experimental results, various new 

device structures are tested and evaluated. A method for optimizing the 
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efficiency for a given set of parameters unique to a particular growth system is 

outlined, and a specific example is given, showing the usefulness of this 

simplified approach. 
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II. PHYSICS OF AMORPHOUS SILICON MATERIALS AND DEVICES 

A. Effects of Positional Disorder 

A complete review of amorphous semiconductor materials can be found 

in Madan and Shaw, and a brief overview is presented here. 6 Amorphous 

semiconductor material is characterized by the large amount of positional 

disorder among its constituent atoms. Short range order is retained, since 

atoms will have approximately the same number of nearest neighbors 

throughout the material. Thus, for silicon, an atom still has four surrounding 

atoms. Each of those atoms has three additional atoms around it, but the same 

is not true for those additional atoms. Broken and distorted bonds cause the 

loss of long range order by the third shel1.6 

The energy-wave vector (E-k) diagram retains its validity for such a 

system, but no longer has a periodic structure. 7 Thus, systems with an indirect 

band gap in the crystalline state, now only have a direct band gap in the 

amorphous state. The conduction and valence bands creating this band gap 

contain extended states allowing free electron and hole travel. Between the 

bands are a large number of localized states that can act as traps and 

recombination centers. 

Positional disorder causes the direct band gap to be narrower in 

amorphous material than in crystalline material. The electron wave functions 

around the constituent atoms are different from atom to atom due to the varying 

energies associated with distorted and broken bonds. When these unequal 

adjacent wave functions interact, they split farther apart in energy than equal 

wave functions would. As a result, the valence band moves up in energy and 
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the conduction band moves down in energy. For the amorphous silicon system 

(a-Si), the band gap is around 1.7 eV to 1.8 eV, while the direct band gap for 

crystalline silicon is around 3.0 eV. 

Because there is a continuous density of states from the valence band to 

the conduction band, there essentially is no forbidden gap in energy levels in 

amorphous material, as shown in Figure 1. The distinction between the 

conduction band and the valence band can be made in two ways. First, the 

mobility of charge carriers drops when the states change from extended states 

to localized states. This occurs because the carrier movement changes from 

free transfer between extended band states, to 'hopping' between the localized 

states. The energy between the bottom of the conduction band extended states 

and the top of the valence band extended states is known as the mobility gap. 

Second, an optical gap can be defined by the dependence of the 

absorption coefficient. The point in each band where the DOS begins to fall 

exponentially marks the extent of that band. For light with energies greater than 

the optical gap, the absorption coefficient increases directly with increasing light 

g(E) 

Ec Ef Ev 

Figure 1. Schematic representation of the energy-dependent midgap density of 
states 
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energy. For light with energies less than the optical gap, the absorption 

coefficient falls exponentially with decreasing light energy. The band gap 

values used here will be the energy of the mobility gap, which are usually 

somewhat smaller than the optical gap. 

B. Sources of Midgap States 
o~ 0';' / 0 ~ 5, F--rC,> 

The energy dependent DOS between the conduction and valence bands 

has two exponentially increasing regions as shown in Figure 2. Region A of 

Figure 2 shows the beginning of the localized states above the valence band. 

These states have a large decreasing energy slope, and are known as the 

valence band tail. The corresponding conduction band tail is shown in region 

D. Regions Band C are deep level states with a smaller energy slope. They 

generally meet near the middle of the mobility gap at an energy density of go. 

The energy level where go is located is also the fermi level in intrinsic material, 

unless defect states at other levels appear. The defect levels created 

A o 

log g(E) 

Figure 2. Logarithmic DOS diagram of band tails and deep level states 
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by doping will cause the fermi level to move toward the valence or conduction 

band, which results in band bending at dopant junctions such as the p-i and i-n 

interfaces of solar cell with the p-i-n doping structure. 

The deep level energy-dependent DOS of regions Band C can be 

represented by: 

(1 ) 

where Ea is the characteristic energy slope of the exponential distribution. The 

values of go and Ea depend on the conditions of growth and can be determined 

experimentally. 

The actual midgap DOS is generally more complicated than shown in 

Figure 2, with large defect densities at specific energy levels. Pure a-Si has a 

very large DOS near the center of the gap. These states act as recombination 

centers, rendering the material useless for devices. The states are created by 

silicon atoms with only three nearest neighbors. The fourth unpaired electron in 

the silicon valence shell, known as a dangling bond, becomes the 

recombination center. 

In 1972, Spear and LeComber grew hydrogenated a-Si (a-Si:H) by the 

glow discharge decomposition of SiH4.8 The excess hydrogen present during 

growth bonded covalently with the silicon dangling bonds, effectively lowering 

the midgap DOS. Now, a-Si:H and its alloys are the primary materials used for 

amorphous devices. The presence of hydrogen in the material also changes 

the band gap according to the relationship shown in Figure 3.9 The highest 

quality a-Si:H has a hydrogen content of eight to ten percent, since less 
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Figure 3. Relationship between hydrogen content and the optical energy gap 

hydrogen leaves too many dangling bonds, while greater hydrogen content 

creates new midgap defect states. Equation 1 is a good representation of the 

midgap DOS in high quality a-Si:H, with a go value around 1015 cm-3eV-1. 

Amorphous material can be doped both p-type and n-type, usually with 

boron and phosphorous respectively. Heavily doped material for ohmic 

contacts can be achieved by high power gas phase decomposition, which 

produces micro-crystalline material. This material has high values of 

conductivity suitable for the p+- and n+-Iayers of a p-i-n solar cell. 

The presence of dopant atoms creates additional disorder in amorphous 

material, which produces new defect levels as shown in Figure 4. 6 These 

defect levels can quickly reduce built-in junction fields, and cause carrier 
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geE) 

Ec Ef Ev 

Figure 4. Midgap DOS diagram with defect levels 

recombination, so the middle of the i-layer must be kept as free of dopant atoms 

as possible. High defect levels are tolerable in the p+- and n+-Iayers, since they 

have only one type of carrier and are short in length. 

The band gap of a-Si:H can be changed by alloying with other elements. 

The most commonly used elements for changing the band gap in a-Si:H are 

germanium and carbon. Narrow band gap material is made with a-(Si,Ge):H, 

and can reach an energy as low as 1.1 eV. Wide band gap material is made 

with a-(8i,C):H, and can be as high as 2.5 eV. The presence of Ge and C 

creates new defects in the material, though, resulting in higher values of go. 

Thus, the transport parameters (mobility, lifetime) for alloyed material will be 

lower due to the additional recombination centers. This transport degradation 

limits the amount of Ge and C that can be added to the i-layer material with the 

practical limits for the band gap at about 1.5 eV minimum to 1.8 eV maximum. 

One other source of midgap states, exposure to sunlight, results in the 

degradation of efficiency over time, as previously mentioned. Staebler and 

Wronski first characterized this effect by exposing amorphous material to 

sunlight and measuring the fall in efficiency.10 To explain this effect, Adler 
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proposed the idea that the incoming photons provided energy to repopulate 

existing defect states in the amorphous structure with charge.11 Supported by 

recent data, this idea indicates that a large charge density will be present in 

amorphous material immediately after exposure to sunlight. 12 

Another model shows that extended exposure to sunlight can also break 

weak hydrogen-silicon bonds creating dangling bond defects. These defects 

capture charge carriers and further decrease the electric field in the i-layer. 

These charges also reduce the transport parameters in addition to 

lowering the electric field in the i-layer, effectively decreasing the efficiency over 

time. Preventing this process from happening by removing the defect states 

during growth may be a way to increase stability, and a method for doing this is 

outlined in appendix A. 

c. Light Absorption. 

The large absorption coefficients of a-Si:H and its alloys are one of the 

reasons they are suitable for solar cell devices. Figure 5 demonstrates how the 

absorption coefficient (a) depends on the photon energy for a given optical 

band gap. The value of a for the band to band transitions of region A in Figure 

5 can be modeled by: 

2 2 
ahv=B (hv - ~) (2) 

where hv is the photon energy, Eg is the optical gap energy, and the prefactor B 

is defined by: 
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(3) 

where Omin is the minimum metallic conductivity, n is the index of refraction, and 

Ew is the extent of the band tailing. 6 The magnitude of the prefactor B is about 

750 cm-1I2eV-1/2. This relation holds for photons with energy equal to and 

greater the optical gap or about 0.1 eV larger than the mobility band gap. 

The exponentially decreasing absorption coefficients from electron 

transitions near the edge of the mobility gap is shown in region B of Figure 5. 

This effect is commonly seen in all types of semiconductor materials, and is due 

to the exponential decrease in the DOS near the edge of the valence and 

c 

r--
2.2 1.2 1.4 1.6 E 1.8 

9 
2.0 

E (eY) 

Figure 5. Relationship between the log of the optical absorption coe1ficient and 
photon energy 



www.manaraa.com

13 

conduction bands. The absorption coefficient for this region follows the 

relationship: 

(4) 

where Eo and Uo are determined experimentally. Eo is known as the Urbach 

energy and is generally around 0.045 eV for valence band tails and 0.025 eV 

for conduction band tails. 

The absorption coefficients in region C of Figure 5 are produced by sub­

band gap absorption, and are much smaller in magnitude. This region is not 

modeled since only wavelengths of 0.8 ~lm or less make significant 

contributions to the quantum efficiency in a-(Si,Ge):H devices. 

D. Solar Cell Doping Structure 

The standard p-n junction used for crystalline solar cells is shown in 

Figure 6. The wide base region is where most of the light is absorbed. 

Photogenerated holes must diffuse to the junction, where they are swept across 

by the built-in electric fields and collected. This structure does not work well for 

amorphous devices since most of the electron-hole pairs (ehps) in the base will 

recombine before they are collected. The high level of defect states in the 

doped material along with low transport parameters makes this recombination 

highly probable. 

The addition of an intrinsic or undoped region between the p- and n­

layers, shown in Figure 7, is required for high efficiency amorphous material. 

The i-layer effectively extends the built-in field created by the p- and n- layers, 
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Figure 6. Schematic representation of a p-n junction solar cell 

provided the i-layer has a low DOS. Light absorption now occurs primarily in 

this region since the p- and n-Iayers are thin (0.1 ~lm). Photogenerated electron-

hole pairs (ehps) are immediately subjected to the electric field, separated, and 

collected. Carrier collection has now become a high efficiency drift process, 

provided the field is sufficiently large throughout the i-layer. 

E. Band Gap Grading 

A constant band gap throughout the i-layer results in a typical band 

diagram shown in Figure 7. To operate the cell at maximum power, it is forward 

biased to a point near the open circuit voltage Voe, as shown in Figure 8. To 

boost the output power closer to the ideal power point; in other words, increase 
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Figure 7. Schematic representation of a p-i-n solar cell and band diagram 

the fill factor, the value of Vac should be kept as high as possible. The ideal 

power point is simply the product of the short-circuit current Isc, and Vac. Then 

the fill factor is the maximum power (lmxVa shown in Figure 8), divided by the 

ideal power. 

To increase Vac , the built-in voltage (VBI shown in Figure 9) must be 

increased. Increasing the i-layer band gap at the p-i interface increases VBI, 

and increases the efficiency. Wide band gap material has a lower absorption 

coefficient, though, according to equation 2. Therefore, the band gap can be 

graded to lower values for the rest of the i-layer. Band gap grading at the p-i 
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Figure 8. Inverted current-voltage relationship of an illuminated solar cell 

interface also helps separate the photogenerated ehps. The electric field is 

generally high ( >105 V/cm), in this region, but the large electron back diffusion 

toward the p-Iayer will promote recombination. The sloping band gap 

effectively increases the electric field by: 

a'I-h, e 
ft"e ax (5) 

where the left hand side is the slope of the valence band for 'hole diffusion' 

fields Eh, and of the conduction band for 'electron diffusion' fields Ee. 

It is not clear from experimental data how the changing band gap is split 

between the valence band and the conduction band. For the fields used in this 

model, the split will be assumed to be equal between both bands. 

As explained previously, a-Si:H alloys increase the midgap DOS, so the 
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Figure 9. Short-circuit band diagram of p-i-n structure 

built-in electric field falls faster with position into the i-layer in alloyed material. It 

can even reduce the field to zero near the middle of the i-layer. Also, increased 

DOS due to light degradation has a similar effect on the electric field. Holes 

generated at and beyond this low-field region depend on diffusion to get 

through to the p-i interface; and, as a result, often suffer recombination before 

they get there. Improvements to the i-layer structure can reduce this effect and 

are studied in detail in the next section and in the device optimization section. 

F. Tandem Cells 

Tandem cell structures are one way to overcome low electric fields in the 

middle of the i-layer. 13 The top of the cell of Figure 10 has a wide band gap i­

layer, and collects most of the high energy photons. The layer is made thin 

(O.3!-lm), so the electric field is maintained at a high level, even if degradation 
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does occur. The bottom cell is made with narrower band gap material for 

collecting the lower energy photons. For high efficiency, the photogenerated 

currents must be equal in each cell. Thus, the bottom cell is slightly thicker than 

the top cell since sunlight has fewer low energy photons, and they travel farther 

before being absorbed. 

The connection between the cells is achieved by doping the middle p­

and n-Iayers very heavily so that a tunnel junction is formed. The increased 

complexity raises the production cost of tandem cells, but this can be offset by 

the increased efficiency from these structures. 

Three cell tandem structures can increase the efficiency even further, but 

the added cost is often too high. Also, matching the currents from each layer 

becomes more difficult as the number of layers increases and sunlight 

conditions change, so two cell tandem structures are about the limit. If the 

bottom layer uses the doping structure proposed in the optimization section in 

chapter 4, the two cell tandem structure may be the most efficient and cost 

h\' 

Wide band 

gap material 

Tunnel junction 

Narrowband 

gap materia I 

Figure 10. Schematic representation of a tandem solar cell 
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e1fective. 

A further improvement to solar cell structures is to reflect light off the back 

of the device. The lowest energy photons produced by the sun can travel 

completely through even low band gap (1.5 eV) material, and are lost if there is 

no back reflection. Increasing the thickness of the i-layer would increase the 

absorption of these photons, but the electric field would drop too low to 

successfully collect the generated holes. A better method for collecting low 

energy light is to texture the back surface to increase its reflection coefficient. If 

the top surface is also textured, most of the photons become trapped in the i­

layer until they are absorbed. This condition, shown schematically in Figure 11 

is modeled in this simulation. 

Illumination 

Figure 11. Low-energy photon reflection from the front and back surfaces of 
textured solar cell 



www.manaraa.com

20 

III. DESCRIPTION OF THE MODEL 

A. Electric Field Profile 

The simulation of photogenerated carrier collection begins with a realistic 

solution for the non-uniform electric field profile in the i-layer. A typical electric 

field profile is shown in Figure 12. A high (105 V/cm), nearly constant field is 

always present at the p-i and i-n interfaces, but is reduced in a very short 

distance by the high DOS in the band tails.5 When the DOS changes from 

band tails to deep level defects, the electric field falls more slowly. This model 

only computes the field in the middle of the i-layer up to the high interface fields, 

since this field changes under different band gaps and biasing conditions and 

has the greatest effect on efficiency. 

o 0.1 0.2 0.3 0.4 0.5 

x (11 m) 

Figure 12. Typical i-layer electric field profile 
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The field can be found by solving the one-dimensional Poisson equation: 

-=-ax E (6) 

where E is the electric field, p(x) is the space-charge density, and E is the 

dielectric constant of a-Si:H. 

To find the space-charge density p(x), the energy-dependent DOS: 

(7) 

is integrated over the energy from the fermi level to the position in energy of go, 

which is the area of the cross-hatched region in Figure 13. The position of go 

marks the transition from acceptor-like states found in the upper half of the 

band gap, to donor-like states in the lower half of the band gap, and is generally 

located near the middle of the gap. Then, for a junction with p-type or n-type 

material, band bending occurs in the i-layer as shown in Figure 13, and the 

donor-like states give up an electron as they move above the fermi level and 

become positively charged. These states are shown by the cross-hatched area 

in the left half of the i-layer in Figure 13. 

The acceptor-like states of Figure 13 capture electrons in the right half of 

the i-layer, and become negatively charged. Since the value of go depends on 

the composition of the material, as explained in Chapter 2, its value will change 
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Figure 13. Band diagram showing occupied midgap defect states 

throughout the i-layer when the band gap is graded. From experimental results, 

the value of go can be found directly from the value of the band gap by: 

(8) 

where Eg is the band gap, and C1 and C2 are experimentally derived. 14 

Typical values for these parameters are 9.76x1022 cm-3eV-1 for C1, and 10.5 

eV-1 for C2, which produce go values of about 1015 cm-3eV-1, and 1016 cm-3eV-

1 for Eg=1.75 eV and 1.5 eV respectively. 

Once go is determined for every position x in the i-layer, p(x) is found 

from: 

p(x) = qgo exp(£) dE' + q~ I
E ' 

q Ea 

(9) 
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where Nt is a defect density that is only non-zero when simulating degraded 

conditions. The approximation for these defect states created by degradation is 

that they are at the center of the band gap and are of the same type as the other 

deep level states in that region. Then, the donor-like states are positive when 

they are below the fermi level and the acceptor-like states are negative when 

they are above the fermi level. 

The analysis of p(x) assumes a zero-temperature occupation probability 

for the defect states. In other words, when a state moves across the fermi level, 

it is immediately occupied. This approximation results in an occupation 

probability error on the order of kT/qEa. The error is small when Ea is greater 

than kT Iq, which it is by a factor of four or greater. 

After the integral in equation 9 is evaluated, and dE/dx is converted to 

EdE/dV, Poisson's equation can be written as: 

(10) 

where qV was substituted for the energy E. Integrating and solving equation 10 

for E results in: 

E = 
(11 ) 

where Eo is to be determined. 

Substituting dV/dx for E, and integrating produces the equation for the 
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energy qV at any position x: 

x = 

o (12) 

This equation is solved numerically for V and substituted back into equation 11 

to obtain E(x). 

There are two ways to determine the value of Eo in equation 12. The 

method used in most computer models is to find Eo by matching the electric 

fields at the p-i and i-n boundaries. 

Another method can be used if the value of Vf shown in Figure 14 is 

known. Since qVf in all biasing conditions is the energy between the fermi 

level and the position in energy of go, the value of Vf can be closely predicted 

from the value of the band gap and the position of go. Then, for Va, the amount 

of biasing voltage, the value of Vf can be found from the following approximate 

relationship: 

(qVf/2)= IlE/2 - (qVa/2) (13) 

where Va is the applied voltage and IlE is the energy extent of the deep level 

defects. 

Once Vf is determined, the integral in equation 12 can be solved for x 

with an estimated Eo. Then, a new value of Eo can be found by comparing the 
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value of x found from equation 15 to the total length of the i-layer; L. This 

process is repeated until the values of x and L are equal, then E(x) is 

completely and uniquely defined. If the band gap is different at the two ends of 

the i-layer, the position of Eo will not be at the center, but will be shifted toward 

the side of lower band gap, as shown in Figure 15. 

To perform the integration in equation 12, a fortran program was written 

that uses a simple Simpson's quadrature routine. This method works well since 

V is a continuous, slowly varying function of x. The integrand is evaluated at a 

minimum of 100,000 points, resulting in a minimum of 30,000 points for E(x) 

with a relative error for the integration of less than one percent. The program for 

finding the electric field and the quantum efficiency is given in appendix B. 

Additional hole diffusion fields due to a sloping valence band from a 

--Eg=1.5 

- - -Eg=1.75 to 1.5 

-----.._---'--' 

o 0.1 0.2 0.3 0.4 0.5 

x (l1·m) 

Figure 15. Electric field profiles of constant and linearly graded band gaps 
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graded band gap are added to E using E=dlV Idx. At this point, only the hole 

fields are computed, since holes are the limiting carrier in amorphous material. 

In other words, if a hole is collected in the p-Iayer, the electron that was 

generated with the hole will also be collected. 

B. Carrier Collection and Photogeneration 

Once the electric field is found, the hole kinetics can be simulated using 

the concepts of Smith.15 An effective diffusion length, known as the down­

stream diffusion length lcl, can be found from: 

(14) 

where lp is the zero-field diffusion length, and Ec is a critical field defined by: 

Ec = kT/qLp (15) 

For a given density of holes ~po generated at some point in the i-layer, 

the hole density ~p at any distance x from that point can be found from: 

(16) 

The value of Lp depends on the density of defect states in the material. From 
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the definition of diffusion length and the fact that mobility is proportional to 

1/g(E) in amorphous material, the following relationship is derived: 

(17) 

where go can be found from equation 8 for any value of Eg , and Lpo is on the 

order of 2000 cm 1/2 eV-1/2.6 

The final step before computing the quantum efficiency is to determine 

the number of holes generated in the i-layer. The total number of ehps 

generated by photons is assumed to be equal to the number of photons 

absorbed. An expression for the number of ehps at any point in the i-layer can 

be derived from the definition for the absorption coefficient and is: 

G = Goa(/..)exp{-a(/..)x}{1-R(/")} (18) 

where Go is the incident photon flux and a(/..) is found from equations 2 and 4. 

R(f...) is the reflection coefficient of the top surface of the cell, which can be made 

small with the addition of an anti-reflection coating. 

c. Quantum Efficiency 

Now the quantum efficiency can be computed at any given wavelength f... 

by: 
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OE(~ = #. co.llected holes = IL G(t.) ex{ (X' (_ dX') dx 
# Incident photons Jo ~ 

o 
(19) 

where L is the length of the i-layer. Since G(/...) and Ld are also functions of x if 

the band gap changes in the i-layer, this integral must be solved numerically. 

The absorption coefficient a is continuous over the entire length L since the 

band gap is continuous over L, so the integrals in equation 19 can be solved 

with a Simpson's quadrature routine. The integrand of the inner integral can be 

evaluated at each of the 30,000 data points found for £(x), for an overall relative 

error of three percent for all numerical methods. 

This error is small in comparison to the fluctuations in experimental data, 

so the accuracy of the quantum efficiency simulation depends primarily on the 

accuracy of g(E), a(/...), Eg, Vf and Lp. Also, the exact value of the electric field 

profile will depend on the number of charge carriers in the i-layer. These factors 

do not affect the results of this model since exact quantitative values are not the 

goal. The general trends in device efficiency will be accurately predicted by this 

method since all the approximations affect each device equally. 

The quantum efficiency curves for various structures can be compared 

and device quality judged. For this report, the total area under the quantum 

efficiency curve will be calculated numerically and given as OET. This term 

represents an overall quantum efficiency when normalized to the range in 

incident wavelengths. OET is used to compare device efficiency for the various 

i-layer structures. The wavelength range utilized here is 400 to 800 nm, since 

higher wavelengths are not present in large quantities in sunlight, and lower 
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wavelengths are easily absorbed in all structures, so the quantum efficiency 

over these wavelengths provides the most information about the cell. 
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IV. COMPUTER SIMULATIONS AND RESULTS 

A. Verification of the Model 

To veri1y that the model accurately predicts the electric 1ield profile, the 

parameters used by Hack and Shur in their complete model are used here, and 

the fields produced by each method are compared in Figure 16.5 
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Figure 16. Electric field profiles trom Hack and Shur (top), and this model 
(bottom) 
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As expected, the fields produced by the simplified approach do not 

maintain a constant interface value since the boundary conditions are not used, 

but this will not significantly alter the quantum efficiency since the charge 

carriers near the interface do not need high fields to be collected. The presence 

of charge carriers has a small effect on the value of the fields near the middle of 

the i-layer as seen in Figure 16, but the effects of biasing voltage are 

reproduced reasonably by the simplified approach and other effects can be 

studied as will be seen later in this section. 

To verify that the model accurately predicts which device structures will 

have higher efficiencies; quantum efficiency and QET values for several 

previously reported structures are computed. These structures have band gap 

profiles shown in Figure 17. 
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Figure 17. Band gap diagrams of the four structures used to test the model 
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The quantum efficiency and OET values for each of the structures is 

shown in Figure 18 with the same forward bias voltage and no material 

degradation (Nt=O). Structure (a) has a low, constant band gap with a high 

OET value due to its high overall absorption coefficient. This structure will not 

have a high open circuit voltage as outlined in Chapter 3, since the band gap is 

narrow. Since this is not modeled, it is simply noted. and devices with low 

interface band gaps will not be considered from now on. since high efficiency 

devices will have high open circuit voltages as explained earlier. 

Structure (b) has a wide, constant band gap, and its OET value drops 
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Figure 18. Quantum efficiency curves and QET values of structures a.b,c and d 
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dramatically from that of structure (a). As seen in Figure 18, low energy photons 

are not absorbed in this material, even after multiple reflections. The high value 

of open circuit voltage for this structure wi" be offset by its inability to absorb 

photons. 

The absorption coefficients in structure (c) are higher than those in 

structure (b), since more low energy photons can be absorbed in the low band 

gap region at the back of the i-layer, but the fact that the band gap decreases 

from a high value at the p-Iayer to a low value at the n-Iayer means that the 

valence band is sloped in the wrong direction to assist in hole collection, 

resulting in even lower QET values than those for structure (b). So even though 

more carriers are generated in this structure, fewer are collected. 

This fact suggests that structure (d) should be an improvement. The 

double graded structure has a wide initial band gap, a narrow band gap region 

for low energy photon absorption, and a sloping valence band that assists hole 

transport over the majority of the region. This structure's quantum efficiency and 

QET values are significantly better as seen in Figure 18. 

These results are similar to those reported by Pawlikiewicz and Guha, 

and others, and sufficiently verify the accuracy of the mode1.5,16-19 The 

'structures shown in Figure 17 show the progression toward higher device 

efficiencies, but a closer look at the parameters controlling the value of QET 

should provide some insight into how further improvements can be achieved. 

B. Optimization of Cell Efficiency 

From the results of the verification section, it is clear that multiple band 

gap grading is necessary for high efficiency. Assuming that an i-layer has the 
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high interface band gap required for a high Voe, and a low band gap region for 

low energy photon collection, the primary parameter controlling the quantum 

efficiency becomes the electric field. The two factors that reduce the electric 

field are applied bias and increased defect states due to degradation. This can 

be seen by comparing the quantum efficiency of structure (b) to the quantum 

efficiency for the same structure for various biasing voltages (Figure 19), and 

after light degradation produces charged midgap defect states with a density of 

Nt (Figure 22). The electric fields for various values of biasing voltage Va and 

defect density Nt are compared in Figures 20, 21, and 23. The characteristic 

parameter values used for the structure (b) material are listed in Table 1. 

The electric field profiles in Figure 20 decrease with increasing forward 

bias, but remain sufficiently high to maintain carrier drift in the middle of the i­

layer, and the collection efficiency will remain high for this structure When the 

Table 1. Set of realistic parameter values used in the model. 

Band gap: Eg = 1.75 eV 

Minimum DOS: go = 2x1 015 cm-3 eV-1 

DOS energy slope: Ea = 100 meV 

Hole diffusion length: Lp = 5000 A 

Built-in voltage: VBI = 1.1 V 

Length of i-layer: L = 0.5 ~lm 

Absorption coefficient prefactor: B = 750 cm-1I2 eV-1/2 
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Figure 19. Effects of forward bias on the quantum efficiency for structure b with 
Nt=1016 cm-3 degradation defect states 
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degradation defect density begins to increase, though, the electric field can fall 

to zero in the middle of the i-layer as shown in Figure 21. 

The linearly decreasing electric field profiles in Figure 21 show that the 

large constant value of Nt dominates the charge density in the i-layer when 

degradation occurs. Biasing at the maximum power point (Va=O.8) reduces the 

electric field to zero for the majority of the i-layer, so the quantum efficiency and 

OET values will be much lower as shown in Figure 22. 

Figure 21 shows that the electric field in a degraded structure falls to zero 

even for open circuit conditions. The OET values are much lower than the 

undegraded material as expected. The middle region of the i-layer has no band 
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bending at all, so collection of holes generated at or beyond this region 

depends purely on diffusion similar to the simple p-n junction cell. Decreasing 

the length of the i-layer would reduce the flat-band region in degraded material, 

and is the reason for the increased efficiency in tandem cell structures as 

explained in Chapter 2. 
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Figure 22. Quantum efficiency curves and QET values of structure b with 
increasing levels of degradation densities and biased at the 
maximum power point (Va=O.8 V) 

Since it is not practical to have more than two cells in tandem, the bottom 

cell must be made thick enough to capture most of the low energy photons, and 

may reach the flat band condition for large Nt. The electric field profiles of 

structure (b) for various degradation levels are shown in Figure 23, with biasing 
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at the maximum power point. The values of Nt used are typical of amorphous 

silicon, so a large zero-field region is present in all but the undegraded material. 

Since an insufficient electric field causes large reductions in the quantum 

efficiency, new structures or materials that do not degrade must be found if 

higher efficiencies in thick material are to be realized. The new growth process 

in appendix A is one step along this direction, and the following analysis is 

another. 

If a minimum carrier collection efficiency for photogenerated ehps is 

chosen, the electric field required to produce this efficiency can be computed. 

Maintaining the electric field above this optimum collection field value (Ed will 

ensure that carrier movement is a drift process. The collection field shown in 

Figure 23 will produce 95 percent collection of all photogenerated holes. 
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Electric field values higher than Cc do not increase the quantum 

efficiency very much, but fields lower than Cc quickly reduce the quantum 

efficiency. Figure 23 shows that the electric field falls far below the collection 

field in the middle of the i-layer as the material becomes degraded. The method 

for increasing the electric field closer to the collection field value is to add hole 

diffusion fields by grading the band gap. There is only a limited amount of band 

gap grading that can be done since the band gap should not be lower than 1.5 

eV or higher than 1.8 eV as mentioned in Chapter 3. The hole field can be 

increased near the middle of the i-layer, where it is needed the most by only 

grading the band gap in that region. The back region of the i-layer has a high 

built-in field, so does not require band gap grading, and the front region must 

have the high initial band gap graded to low band gap as usual. The structure 

shown in Figure 24, first proposed by Dalal, only has band gap grading where 
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Figure 24. Graded band gap profile for increased efficiency 

0.'1 



www.manaraa.com

41 

needed.4 The quantum efficiency and OET values shown in Figure 25 are an 

improvement over even the double-graded structure. 

The highest OET value for the double graded structure with no degraded 

states found with this model was 0.76 while the OET value for structure 1 also 
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Figure 25. Quantum efficiency curves and QET values for two levels of 
degradation density for structure 1 

with no degraded states is 0.78. The addition of degraded states lowers the 

QET value to 0.72, suggesting that if a known value of degraded states wi" be 

present in a material, the optimized structure must be modified. 

The collection field tc for the improved structure, shown in Figure 26, 

increases quickly in the low band gap region because of the low transport 

parameters typical of alloyed material. Thus, it is necessary to limit the extent of 
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Figure 26. Electric field and constant collection field profiles in structure 1 

the low band gap region to only that amount required to capture most of the low 

energy photons. Also, this region should be kept as near to the p-i interface as 

possible. Finding the right combination of band gap grading and light 

absorption can be difficult, and emphasizes the value of a good computer 

model. 

If it is known that a material degrades to a stable value of Nt, the structure 

of Figure 24 can be optimized for this condition. The grading should start near 

the position where the built-in field falls below Ee, and end near the same point 

at the back of the i-layer. The region before the grading begins will still have the 

high interface fields, so is kept at the low value required for low energy photon 

absorption. Since the value of Nt can be different for each particular material 



www.manaraa.com

2.0 

1.8 

Eg(eY) 
1.6 

1.4 

1.2 

o 0.1 

43 

Structure 2 

0.2 
x (11m) 

0.3 0.4 

Figure 27. Optimized band gap structure for a heavily degraded solar cell 

fabrication system, a single high value is chosen here to show how the model is 

used to find the highest efficiency structure. The optimized structure for 

Nt=3x1016 cm-3 is shown in Figure 27. 

The quantum efficiency and QET values do increase for this idealized 

structure as seen in Figure 28, even with a greater defect density than in 

structure 1. Once the value of Nt is determined for a particular growth system, a 

structure similar to structure 2 can be made. The length of the i-layer L will 

depend on if the structure is used in a tandem or alone. 

If the cell is to be a single layer, the optimum length can be found with 

this model using high back reflection coefficients. The length with the highest 

efficiency for a structure similar to structure 2 is around 0.55 ~lm. If the cell is to 

be the bottom layer of a tandem, the length must be made to produce the same 
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Figure 28. Quantum efficiency curves for structures 1 and 2 at Va=O.8 V 

photocurrent as the top layer. 

The quantum efficiency curves of Figure 28 behave exactly as expected 

since the higher fields present in structure 2 allow greater carrier collection for 

almost the entire wavelength range. The only part of the spectrum that suffers a 

decrease in carrier collection is the very top end. The low energy photons are 

not as easily absorbed in structure 2 since there is less low band gap material. 

The electric field profile shown in Figure 29 for the idealized structure 

comes closer to Ec throughout the i-layer. Since the value of collection 

efficiency for computing Ec was arbitrarily chosen, it is not necessary for the 

electric field to be above Ec everywhere. It is necessary, though, to stay 
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Figure 29. Electric field and constant collection field profiles in the structure 2 

reasonably close to it as the fields in Figure 29 do to maintain high efficiency. 

The only way to further increase the efficiency by band gap grading is to 

see if the slightly reduced hole field of less band gap grading is offset by the 

increased absorption from a larger, low band gap area. As the slope of the 

band gap is decreased for higher absorption, the value of QET , as shown in 

Table 2, decreases for a cell with high back reflection coefficients, showing that 

maintaining high fields is more important than increasing the absorption. This is 

not true for a cell without high back reflection coefficients. The larger low band 

gap area now results in a higher QET value for this condition, showing that 

absorbing the lower energy photons is more important than maintaining high 
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Table 2. Comparison of QET values for structures with low and high back 
reflection coefficients, and long and short low band gap areas. 

Structure 

1 

2 

3 

4 

Description 

short low band gap area, 
high electric field, 

high back reflection 
coeff. 

long low band gap area, 
low electric field, 

high back reflection 
coeff. 

short low band gap area, 
high electric field, 

low back reflection coeff. 

long low band gap area, 
low electric field, 

low back reflection coeff. 

QET 

0.763 

0.761 

0.660 

0.665 

electric fields. Thus, if texturing or providing a dielectric stack to produce high 

back reflection coefficients is not possible or practical, the design of such a cell 

will be different when optimizing the efficiency. All of the structures used to 

produce the values in Table 2 have a degradation density of Nt = 1016 cm-3 and 

are biased at the maximum power point of Va = 0.8 V. 

The method outlined here to optimize the efficiency of a solar cell with a 

particular degradation density, forward bias voltage and midgap state density 

can be used for any growth system once these parameters are known. As 

explained, the quantitative results will only be estimates, but the model allows 

for the design of the optimum band gap profile for a particular growth system. 
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V. CONCLUSIONS 

The unique properties of amorphous silicon can be successfully modeled 

by the approach presented here. The flexibility of the analysis allows the 

freedom of design necessary for efficiency optimization, rather than being 

tailored to a specific device structure. All the parameters affecting carrier 

generation and collection are included in the model. The problem of device 

degradation is modeled and structures that can minimize its effects are 

proposed. 

The electric field profiles produced by the model are sufficiently close to 

those found by others using a complete analysis including boundary conditions 

and charge carriers showing that the method used here is a valid 

approximation. It is also validated by reproducing experimental reports of 

several device structures by comparing the quantum efficiency of each device. 

The simplified approach presented here allows for the detailed study of a few of 

the main parameters controlling device efficiency, which leads to ways to 

improve the device structure. Then the model is used to guide the design of a 

new band gap grading structure for the i-layer of a p-i-n solar cell. 

The new structures shown by the model to have increased efficiency can 

be optimized for the characteristics of a particular fabrication system. The 

system outlined in appendix A is part of an on-going effort to produce solar cell 

devices using these new types of structures. When the increased stability of this 

fabrication system is combined with an optimized device structure, the product 

may become a cost effective alternative to fossil fuels. 
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APPENDIX A: STABLE a-Si:H FABRICATION 

The standard a-Si:H growth process by gas phase decomposition of 

SiH4 leads to non-uniform Si deposition. Spikes of SiH3 can grow on the 

surface, leaving voids in the between the spikes. This non-uniformity leads to 

material instability, since the incoming photon energy can facilitate carrier 

trapping in these voids. 11 

A deposition process that removes the voids during growth will have 

greater stability, and is the goal of the process described here. Microwave 

Electron-Cyclotron-Resonance (ECR) plasma deposition offers a way to control 

the growth chemistry on the surface during deposition. It has been shown that if 

energy is supplied to the growing surface only, the SiH3 spikes are broken up 

without breaking weak bonds deeper in the amorphous system. 20 It is not 

desirable to break any of the weak bonds deeper in the material since this 

increases the defect density. 

A high density of H or F ions bombarding the growing surface is one way 

to provide energy to the surface. These ions etch the surface by removing the 

poorly bonded Si in the SiH3 spikes, leaving behind a vacant site for more 

perfect bonding. The ECR system provides such an ion bombardment and has 

resulted in more stable amorphous material. 21 The schematic representation of 

an ECR deposition system is illustrated in Figure 30. 
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APPENDIX B: COMPUTER PROGRAM 

PROGRAM QEPIN 

Purpose Solve Poisson's equation for the electric field 
as a function of position in the i-layer of a 
graded band gap p-i-n junction solar cell, and 
compute the quantum efficiency 

Description 
The method used is Simpson's rule quadrature 
for the electric field and quantum efficiency 
integrals as given in the text 
When the value of Go is changing with position, 
the i-layer is broken into 50 subintervals of 
constant Go 

Input parameters 
LENGTH --> (real) length of the i-layer in crn 
VI ------> (real) char. energy slope (#/cmA 3 eV) 
EG ------> (real) initial band gap (eV) 
EG2 -----> (real) final band gap (eV) 
VEND(N) -> (real) ending voltage at each junction (V) 
NT ------> (real) degraded defect density (C/crnA 3) 

Note: this program should be altered to accept 
multple band gap grading 

INTEGER TEST,I,J,K,SI,S2,CHECK,L,NI,NIH,NIL, 
+ S(IOOO),N,FLAT,M,STOP 

PARAMETER (SI=2,S2=100,GI=-10.5I237884,G2=52.93543891) 
REAL INCREASE,STEP,FACTORI,FACTOR2, 

+ K2,V,QE, LENGTH, TEMPI, TEMP2, 
+ NT,MUTAU(555000),X,E,ALPHAI,ALPHA2, 
+ TERM,DIFF,E02(SI,S2),VEND(SI), 
+ LAST(Sl),XEND(SI,S2),TOTAL(Sl), 
+ HNU,LAMDA,XE(555000),EX(555000), 
+ EG, ESTART,VSTART, XSTART,EOSTART2, 
+ ET(555000),XD(555000),XSTEP,XTEST, 
+ GO,VI,A(SI,S2),INNER(555000), 
+ DELX,DELY,B,SLOPE,HOLD,QET,VX(555000), 
+ VT(555000),VY(IOOOOO),QEW,LPC(555000) 
+ C3,C4,C5,TOTPROBC(IOOOOO),XPERM(IOOOOO) 
+ VSTEP,TOTLENGTH,ADD,BETAI,BETA2,VW(IOOOOO), 
+ HOLD2,LP(555000),EG2,EXADD,EGADD,GAP(IOOOOO), 
+ GAPC(IOOOOO),INNERC(IOOOOO),MUTAUC(555000), 
+ GI,G2,GOI,G02,EC,MIN,ALPHAX,DALPHAX,D,CI,C2, 
+ TEMP3,C6,XB(55500),PROB,TOTPROB(O:IOOOO), 
+ EAMB(50000),GAP2,GAP3,TOTPROBPERM(IOOOOO) 

READ (5, *)LENGTH,VI,EG,EG2 
TOTLENGTH=LENGTH 
WRITE(6,*) 'Length of i-layer: ' ,LENGTH*I.OE4 
WRITE(6,*)' Bandgap = , ,EG,' To ' ,EG2 
SLOPE=(EG2-EG)/TOTLENGTH 
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B==EG 
IF (SLOPE.EQ.O.O) THEN 

END IF 

XEND(1,1)=1.0 
XEND(2,1)==1.0 
GO=EXP ( (G1*EG) +G2) 
WRITE(6,*)'Go = ',GO 
A(1,1)=2*1.6E-19*GO*V1/(12.*8.854E-14) 
A (2, 1) =A (1, 1) 
READ(5,*)VEND(1),VEND(2) 
FLAT=l 
GOTO 1 

FLAT=-l 
XSTEP=TOTLENGTH/100.0 
DO 1==1,2 

X=O.O 
K2=TOTLENGTH/2.0 
IF (I.EQ.1) THEN 

WRITE(6,*) 'For p+ side' 
ELSE 

WRITE(6,*) 'For n+ side' 
END IF 
READ(5,*) VEND (I) 
WRITE(6,*) 'Ending voltage = ' ,VEND (I) 
DO J=1,50 

END DO 

XEND(I,J)=X+XSTEP 
G01=EXP«G1*(SLOPE*K2+B»+G2) 
K2=K2+(XSTEP*(-1.0)**I) 
IF (K2.LT.O.O) K2=O.O 
IF (K2.GT.TOTLENGTH) K2=TOTLENGTH 
G02=EXP«G1*(SLOPE*K2+B»+G2) 
GO=(G02+G01)/2.0 
GO=1.E16 
A(I,J)=2.*1.6E-19*GO*Vl/(12.*8.854E-14) 
X=X+XSTEP 

WRITE(6,*)' Go =' ,GO,' at x =',K2*1.E4 
END DO 
XEND(1,50)=1.0 
XEND(2,50)=1.0 

1 READ(5,*) NT 
WRITE(6,*) 'NT = ',NT 
EXADD=O.O 
XSTEP=O.5E-8 
MIN=O.O 
CHECK=l 
INCREASE=1.0 
EOSTART2=1.O 
STEP=5.E-6 
TEST=l 
FACTOR1=STEP/3.0 

C return point for new Eostart 

5 1=1 
NI=l 
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IF (EXADD.GT.O.O) GOTO 92 
J=l 

92 E02(I,J)=EOSTART2 
IF (CHECK.LT.O) THEN 

END IF 

IF (I.EQ.1) THEN 
XE(l)=TOTAL(l) 
EX(1)=SQRT(EOSTART2) 
VX(l)=O.O 

ELSE 

END IF 

NI=2 

XE (NI) =TOTAL (1) 
EX(NI)=SQRT(EOSTART2) 
VX(NI)=O.O 
NI=NI+1 

100 TEMP1=V1*(EXP(V/V1)-EXP(VSTART/V1» 
TEMP l=TEMP 1 +VSTART-V 
TEMP1=A(I,J)*TEMP1+2.*1.6E-19*V*NT/(12.*8.854E-14) 
TERM=1.0/SQRT(TEMP1+E02(I,J» 
IF (K.EQ.1) GOTO 130 
IF «K/2*10) .EQ.INT(K2*5» GOTO 120 
X=FACTOR1*(FACTOR2+TERM) 
E=1.0/TERM 
IF (CHECK.GT.O) GOTO 110 
IF (I.EQ.1) THEN 

X=TOTAL(l)-X 
ELSE 

X=TOTAL(l)+X 
END IF 
XE (NI) =X 
EX(NI)=E 
VX(NI)=V 
NI=NI+1 
IF (I.EQ.1) THEN 

X=TOTAL(l)-X 
ELSE 

X=X-TOTAL (1) 
END IF 

110 IF «X+EXADD) .GE.XEND(I,J» THEN 
J=J+1 
TEMP1=V1*(EXP(V/V1)-EXP(VSTART/V1» 
TEMP l=TEMP l+VSTART-V 
TEMP1=A(I,J)*TEMP1+2.*1.6E-19*NT 
TEMP1=TEMP1*V/(12.*8.854E-14) 
E02(I,J)=E**2-TEMPl 

END IF 
TERM=2*TERM 
GOTO 130 

120 TERM=4*TERM 
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130 FACTOR2=FACTOR2+TERM 
V=V+STEP 
IF (V.GE.VEND(I» GOTO 200 
K=K+l 
K2=K2+1.0 
GOTO 100 

200 TOTAL(I)=X 
1=1+1 
IF (I.EQ.2) THEN 

E02(2,1)=EOSTART2 
STOP=NI-l 
GOTO 90 

END IF 
IF (CHECK.LT.O) GOTO 300 
XT=TOTAL(1)+TOTAL(2) 
DIFF=LENGTH-XT 
IF (DIFF.LT.-l.OE-8) THEN 

END IF 

IF (TEST2.LT.O) THEN 

END IF 

MIN=LENGTH 
XSTEP=XSTEP/IO.O 
LENGTH=LENGTH+XSTEP 
EXADD=(TOTLENGTH-LENGTH)/2.0 
XSTEP=O.5E-8 
TEST2=1 
J=l 
DO M=1,50 

END DO 
GOTO 5 

IF (EXADD.GT.XEND(l,M» J=M+l 

IF (DIFF.GT.l.OE-8) THEN 
EOSTART2=EOSTART2-INCREASE 
INCREASE=INCREASE/10.0 
IF (INCREASE.LT.l.O) THEN 

INCREASE=l.O 
EOSTART2=1.0 
IF (FLAT.GT.O) THEN 

LENGTH=XT 
EXADD=(TOTLENGTH-LENGTH)/2.0 
J=l 
GOTO 5 

END IF 
LENGTH=LENGTH-XSTEP 
IF (LENGTH.LT.MIN) THEN 

LENGTH=LENGTH+XSTEP 
XSTEP=XSTEP/IO.O 
LENGTH=LENGTH-XSTEP 

END IF 
XSTEP=XSTEP*lO.O 
TEST2=-1 
EXADD=(TOTLENGTH-LENGTH)/2.0 
J=l 
DO M=1,50 

IF (EXADD.GT.XEND(l,M» J=M+l 
END DO 
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IF (DIFF.LT.-1.0E-8) THEN 

END IF 

IF (TEST.LT.O) THEN 
EOSTART2=EOSTART2+INCREASE 
GOTO 5 

END IF 
INCREASE=INCREASE*10.0 
EOSTART2=EOSTART2+INCREASE 
GOTO 5 

IF (CHECK.GT.O) THEN 
CHECK=-1 
GOTO 5 

END IF 
300 N=O 

DO J=STOP,1,-1 
N=N+1 
XD (N) =XE (J) 
ET (N) =EX (J) 
VT(N)=VX(J)+(EG/2.0) 

END DO 
DO J=1,N 

END DO 

XE (J) =XD (J) 
EX(J)=ET(J) 
VX (J) =VT (J) 
VT(J)=VX(J)-EG 

DO J=(STOP+l), (NI-1) 
VX(J)=(EG/2.0)-VX(J) 
VT(J)=VX(J)-EG 

END DO 
ADD=O.O 
IF (TOTLENGTH. EQ. LENGTH) GOTO 301 
ADD=TOTLENGTH/2. O-TOTAL (1) 
XSTEP=LENGTH/IOOOO.O 
I=INT(ADD/XSTEP) 
DO J=1,N 

END DO 
X=XD(N) 

XD (J) =XE (J) 
ET (J) =EX (J) 
VW (J) =VX (J) 
VY (J) =VT (J) 

DO J=(N+l), (N+I-1) 
X=X+XSTEP 
XD(J)=X 
ET(J)=O.O 
VW(J)=EG/2.0 
VY(J)=-EG/2.0 

END DO 
XD(J)=TOTLENGTH/2.0 
ET(J)=O.O 
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VW(J)=EG/2.0 
VY(J)=-EG/2.0 
N=N+I+l 
ADD=TOTLENGTH/2. O-TOTAL (2) 
I=INT(ADD/XSTEP) 
X=TOTLENGTH/2.0 
DO J=N, (N+I) 

END DO 
N=N+I+l 

X=X+XSTEP 
XD(J)=X 
ET(J)=O.O 
VW(J)=EG/2.0 
VY(J)=-EG/2.0 

M=STOP+l 
L=NI-l+N-M 
ADD=XD(N-1)-XE(M) 
DO J=N,L 

XD(J)=XE(M)+ADD 
ET(J)=EX(M) 
VW(J)=VX(M) 
VY(J) =VT (M) 
M=M+l 

END DO 
SLOPE=(EG2-EG)/TOTLENGTH 
EXADD=SLOPE 
DO J=l,L 

XE (J) =XD (J) 
EGADD=SLOPE*XE(J) 
GAP (J)=EGADD+EG 
EX(J)=ET(J)+EXADD 
VX (J) =VW (J) 
VT(J)=VY(J)-EGADD 

END DO 
SLOPE=(EG2-EG)/TOTLENGTH 
B=EG 
DO J=l,L 

END DO 
NI=L+l 

GO=EXP (Gl* (SLOPE*XE(J)+B)+G2) 
LP (J)=2236.07/SQRT (GO) 

301 XSTEP=TOTLENGTH/20.0 
IF (TOTLENGTH.EQ.LENGTH) THEN 

SLOPE=(EG2-EG)/LENGTH 
EXADD=SLOPE 

END IF 

DO J=l, (NI-l) 

END DO 

EGADD=SLOPE*XE(J} 
GAP (J)=EGADD+EG 
EX(J)=EX(J)+EXADD 
VT(J)=VT(J)-EGADD 
GO=EXP(G1*(SLOPE*XE(J)+B)+G2) 
LP(J)=2236.07/SQRT(GO) 

WRITE(6,*) , EOSTART =' ,SQRT(EOSTART2) 
WRITE(6,*) , TOTAL(l) = " TOTAL(l) 
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XTEST=O.O 
DO 1=1, (N1-1) 

IF (XE(I) .GE.XTEST) THEN 
WR1TE(6,*)XE(I)*1.E4,EX(I),VX(I),VT(I) 

XTEST=XTEST+XSTEP 
END IF 

END DO 
WRITE(6,*)XE(NI-1)*lE4,EX(NI-1),VX(NI-1),VT(NI-1) 
WRI TE ( 6, *)' , 
XSTEP=LENGTH/1000.0 
XTEST=XSTEP 
STOP=NI-1 
NI=l 
XD(NI)=XE(l) 
ET (NI) =EX (1) 
DO I=2,STOP 

IF (XE(I) .GE.XTEST) THEN 
315 NI=NI+1 

END IF 
END DO 

DELY=EX(I)-EX(I-1) 
DELX=XE(I)-XE(I-1) 
SLOPE=DELY/DELX 
B=EX(I)-(SLOPE*XE(I» 
XD(NI)=XTEST 
ET(NI)=(SLOPE*XTEST)+B 
DELY=GAP(I)-GAP(I-1) 
SLOPE=DELY/DELX 
B=GAP(I)-(SLOPE*XE(I» 
GAPC(NI)=(SLOPE*XTEST)+B 
XTEST=XSTEP*NI 
IF (XE(I) .GE.XTEST) GOTO 315 

DO I=l,NI 
GO=EXP (G1* (SLOPE*XD(I)+B)+G2) 
LPC(I)=2236.07/SQRT(GO) 

END DO 
TOTPROB(O)=l 
XTEST=O.O 
DO I=l,NI 

EC=O.0258/LPC(I) 
TEMP1=SQRT«ET(I)/EC)**2+4) 
TEMP1=TEMP1/(2.*LPC(I» 
IF (ET(I) .LT.O.O) THEN 

TEMP1=TEMP1+ABS(ET(I)/(2.*LPC(I)*EC» 
ELSE 

TEMP1=TEMP1-ABS(ET(I)/(2.*LPC(I)*EC» 
END IF 
PROB=EXP(-XSTEP*TEMP1) 
TOTPROB(I)=TOTPROB(I-1)*PROB 
XE (I) =XD (I) 
XTEST=XSTEP*NI 
XPERM (I) =XD (I) 
TOTPROBPERM(I) =TOTPROB (I) 

END DO 
FACTOR1=XSTEP/3.0 
QET=O.O 
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DO LAMDA=0.4,0.8,0.02 
SLOPE=(EG2-EG)/TOTLENGTH 
D=EG 
HNU=1.242/LAMDA 
ALPHA1=0.0 
FIRST=-1 
SECOND=-1 
THIRD=-1 
QEW=O.O 
N=1 
X=1.0 

410 FACTOR2=0.0 

415 

K=O 
K2=0.0 
J=J+1 
B=B+1.0 
DO I=1,STOP 
IF (XE (I) . LT . 0 . 0) XE (I) =0 . 0 
K=K+1 
K2=K2+1.0 
GAP (I)=SLOPE*XD(I)+D 
IF «HNU-GAP(I» .GT.0.1) THEN 
ALPHA2=«750*(HNU-GAP(I»)**2)/HNU 
IF (ALPHA2.GT.4.E5) THEN 

DALPHAX=4.E5 

END IF 

ALPHAX=4.E5*XE(I) 
GOTO 415 

TEMP1=750**2/HNU 
TEMP2=(HNU-GAP(I»**2 
ALPHAX=ALPHA2*XE(I) 
TEMP1=TEMP1*TEMP2 
TEMP2=2.*TEMP1*XE(I) * (-SLOPE) 
DALPHAX=TEMP1+TEMP2 

ELSE 
C1=(750**2)*0.01 
TEMP1=-C1/(GAP(I)+0.1) **2 
TEMP1=TEMP1*EXP(-(GAP(I)+0.1)/0.045)*SLOPE 
TEMP2=-C1*SLOPE/0.045 
TEMP2=TEMP2/(GAP(I)+0.1) 
TEMP2=TEMP2*EXP(-(GAP(I)+0.1)/0.045) 
C3=Cl/(GAP(I)+0.1) 
C3=C3*EXP(-(GAP(I)+0.1)/0.045) 
DALPHAX=(TEMP1+TEMP2) *EXP(HNU/0.045) *XE(I) 
DALPHAX=DALPHAX+C3*EXP(HNU/0.045) 
ALPHAX=C3*EXP(HNU/0.045)*XE(I) 

END IF 
TEMP 2 =DALPHAX*EXP (-ALPHAX) 
TERM=TOTPROB(I)*TEMP2 
IF (I.EQ.1) GOTO 430 
IF (I.EQ.STOP) GOTO 430 
IF «K/2*10) .EQ.INT(K2*5.» GOTO 420 
TERM=2*TERM 
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GOTO 430 
TERM=4*TERM 
FACTOR2=FACTOR2+TERM 

END DO 
QE=FACTOR1*FACTOR2 
IF (N.EQ.1) GOTO 440 
QE=QE*(0.9**(N-1»*(0.8**(N-2» 
QEW=QEW+QE 
M=O 
IF (QE.LT.1.E-5) THEN 

END IF 
X=X+1.0 
N=N+1 

IF «N/2*10) .NE.INT(X*5.» GOTO 500 

IF «N/2*10) .EQ.INT(X*5.» THEN 
D=EG2 

ELSE 
D=EG 

END IF 
SLOPE=-SLOPE 
DO I=STOP,l,-l 

END DO 

M=M+l 
VT(M)=XE(M)+TOTLENGTH 
TOTPROBC (M)=TOTPROB (I) 
XB(M)=XD(I) 

DO I=l,STOP 
XD(I)=TOTLENGTH-XB(I) 
XE(I)=VT(I) 

END DO 
GOTO 410 

TOTPROB (I) =TOTPROBC (I) 

WRITE(6,*)' QE = ' ,QEW,' LAMDA = , ,LAMDA,X 
DO I=l,STOP 

END DO 

XE (I) =XPERM (I) 
XD (I) =XPERM (I) 
TOTPROB (I) =TOTPROBPERM(I) 

IF (J.EQ.1) GO TO 530 
IF (J.EQ.21) GOTO 530 
IF «J/2*10) .EQ.INT(B*5.0» GOTO 520 
QEW=2*QEW 
GOTO 530 
QEW=4*QEW 
QET=QET+QEW 

END DO 
QET=QET*(.02/3.0)/0.4 
WRITE(6,*)' QET = ',QET 

600 CONTINUE 
END 
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